Published Jun 2011 | PLoS ONE, 1 June 2011 | Volume 6 | Issue 6 | e21481
Dynamics of airborne influenza A viruses indoors and dependence on humidity
Yang W, Marr LC
Abstract
There is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in temperate regions and that the efficiency of this route depends on humidity.
Nevertheless, the precise mechanisms by which humidity might influence transmissibility via the aerosol route have not been elucidated.
We hypothesize that airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation rate and respiratory droplet size.
To gain insight into the mechanisms by which humidity might influence aerosol transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public settings over a relative humidity (RH) range of 10–90%.
The model incorporates the size transformation of virus-containing droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted concentration of infectious IAVs in air is 2.4 times higher at 10%RH than at 90%RH after 10 min in a residential setting, and this ratio grows over time.
Settling is important for removal of large droplets containing large amounts of IAVs, while ventilation and inactivation are relatively more important for removal of IAVs associated with droplets <5 µm. The inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min.
Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and results complement recent studies on the relationship between humidity and influenza's seasonality.
Conclusion
Maintaining a high indoor RH and ventilation rate may help reduce chances of IAV infection.
Scientific studies main menu
Kuru hava ve hava yoluyla enfeksiyon
Düşük nem, virüslerin ve havadaki bakterilerin bir binanın havasında dağılması ve dolaşması ve tüm sakinleri tehdit etmesi için bir kanal görevi görü...
Read moreKuru hava ve hava yolu savunma sistemimiz
Düşük nem mukoza zarlarımızı kurutur ve vücudumuzun havadaki mikroplara, virüslere ve bakterilere karşı doğal savunmasını engeller.
Read moreKuru hava ve gözlerimiz
Düşük nem, gözlerimizin prekorneal gözyaşı filmini kurutur ve bizi göz tahrişlerine ve kontakt lens rahatsızlığına eğilimli hale getirir.
Read moreKuru hava ve cildimiz
Düşük nem cildimizin dış tabakasını kurutur, kaşıntı, çatlama ve dermatolojik sorunlara yol açar.
Read more